FE0007632: Novel Inorganic/Polymer Composite Membranes for CO₂ Capture

Hendrik Verweij

July 9, 2012

Inorganic Materials Science Materials Science and Engineering

Total budget: October 1, 2011...September 30, 2014

• DOE: \$3,000K; OSU: \$679K; ODOD: \$500K

BP1: October 1, 2011...September 30, 2012

- DOE: \$898K; OSU: \$219K; ODOD: \$132K
- BP2: October 1, 2012...September 30, 2013
- DOE: \$958K; OSU: \$226K; ODOD: \$181K

BP3: October 1, 2013...September 30, 2014

• **DOE:** \$1,144K; **OSU:** \$233K; **ODOD:** \$187K

NETL: José D. Figueroa, project manager

OSU:

- Hendrik Verweij: Materials Science: PI
 - ceramic synthesis, transport, structure analysis
- ♦ Prabir K. Dutta: Chemistry: Co-PI
- ♦ Winston W.S. Ho: Chemical Eng.: Co-PI
 - polymer synthesis, module fabrication, testing

Gradient Technologies:

♦ Stephen J. Schmit: Chemical Eng.: Systems

AEP:

Over State And Set Up and Set Set Up and Se

Trisep Corporation

Orever A. Knappe: Consultant for manufacturing

Membrane-based process for:

- Cost-effective capture of CO₂ from flue gas:
 - \diamond <35% increase of the cost of electricity
 - ♦ >90% capture, >95% purity at 150 Atm total pressure
- **2** stage process with air sweep:
 - \diamond combustion [CO₂] = 18.5...25%; cost optimum at 22.5%
- Limits membrane concept to:
 - ◊ Mass-manufactured polymer-supported membranes
 - Orepresentation Permeance >3,000 GPU; selectivity >150

Permeance is CO₂ flux/pressure difference Selectivitity is for CO₂ w.r.t. N2

July 9, 2012

Ideal membrane separation: isothermal \rightarrow free! **kinetic gas permeance:** <10⁸ GPU; **selectivity (** α **):** < ∞ **capillary condensation:** <10⁷ **GPU**; **selectivity (α):** <50 diffusion: <10⁵ GPU; α polymers: <100; inorganics: < ∞ thin, selective permeable | thick, less selective, defects

Process concept

Coal feed

Stage 2: fresh air sweep maximizes driving force

Stage 1: high *f*, *α* **allows for** 10...15 kPa **evacuation**

July 9, 2012

NETL Review Presentation

Supported hybrid membrane concept

July 9, 2012

NETL Review Presentation

BP1/YR1:

- Lab scale synthesis, characterization
- Ceramic supports for quantitative parameters
 BP2/YR2:
- Lab scale membrane optimization
- Bench scale membrane fabrication
 BP3/YR3:
- Bench scale membrane optimization
- Demonstration

Development guided by systems/costs studies

July 9, 2012

For 50% CO₂ on good, resistive ceramic supports:

- **Zeolite Y:** *f* = 500 GPU; *α* > 100
- **Modified** γ -alumina: f = <3000 GPU; $50 < \alpha < 150$

Success criteria for polymer supports:

- **BP 1:** f = 1000...3000 GPU with $\alpha = 50...100$.
- **BP 2:** f = >3000 GPU with $\alpha = 50...100$.
- **BP 3:** f = >3000 GPU with $\alpha = >200$

Ceramic supports: characterization, parametrization

- 1. Smooth, highly permeable ceramic support M
- 2. Cover layer permeance >3000 GPU ☑
- 3. Crack-free inorganic layers on polymer ☑
- 4. Ceramic intermediate on polymer >3000 GPU ☑
- 5. Selection polymer support: PES 100...1000 kD ☑
- PES is polyethersulfone
- 6. Formation zeolite Y (selective material) <15' ☑
- 7. Building a mini-module 🗹
- **8. Introducing the selective layer:** $\alpha > 15$

July 9, 2012

NETL Review Presentation

(Precipitation synthesis) Dispersion by:

- Sonification
- Colloidal stabilisation
 Purification by:
- Screening, centrifugation (Support pre-treatment by):
- Reactive ion etching Deposition by:
- Film coating, filtration Consolidation by:
- Drying, rapid heating

Dry support

Wet support

Highly permeable ceramic support

For membrane deposition and transport studies

Colloidal casting, sintering of:

- 2 mm AA3: 3 μm α-Al₂O₃ 1400 C
 ◊ ground and polished
- 11 μm AKP30**:** 0.3 μm α-Al₂O₃ 950
- 300 nm γ -alumina; $\mathcal{O}_p=4$ nm
 - ♦ Boehmite, calcined at 600 C

Permeance = 11,000 GPU

Crack-free ceramic layers on polymers

Most cracks caused by:

- Excessive stretching
- Drying particle layers

Drying cracks avoided by

- Improving adhesion
- Improving spreading
- Decreasing thickness
- Increasing packing
- Internal lubrication

- Permeable porous inorganic layers as intermediate layers and modification scaffolds 1000 kD polyethersulphone
- polymer supports:
- highly permeable; thermally stable up to 150...200 C.
- **Colloidal casting, drying of:**
- 420 nm AKP30: 0.3 μ m α -Al₂O₃ Without cover: $f_{CO_2} > 4000$ GPU With ~1 μ m PDMS: $f_{CO_2} = 650$ GPU

July 9, 2012

$$\alpha_{\rm CO_2/N_2} = 6.4$$

Zeolite Y: one of the potential selective materials

- Commercial growth times: >>2 h (\$10B market)
- For membrane deposition: <16 min required
- New dehydration method: <15 min</p>

Spiral-wound with 1 μ m polydimethylsiloxane on 400 nm porous α -Al₂O₃ on 1000 kD polyethersulfone

Central tube

July 9, 2012

Sweep spacer

Module

Characterization:

- 1. Electron microscopy of 2D FIB cross-sections ☑
- 2. High-pressure sorption, dehydration studies ☑
- 3. Membrane transport at flue gas conditions M
- 4. Contact-less characterization by ellipsometry ☑ System studies:
- 1. Preliminary OSU model in Aspen ☑
- 2. Implementing water management
- 3. Implementing detailed membrane transport \Box

Electron microscopy of FIB cross-sections

Electron-transparent films; "perfect" 2D cross-sections

- for structure analysis
 Porous polymers difficult:
- instability, charging

Improvements:

- modern equipment
- developing operator skill
- application thick Pt layers

Sorption isotherms for transport studies Confirmation that CO₂ **is active in water exchange**

Thickness, contactless during synthesis & use Composition from refractive index

AKP30 α -Al₂O₃ on 1000 kD polyethersulfone:

• Thickness 410...430 nm

Growth of thin, selective zeolite Y layers **Selective modification alumina layers Optimization/automation layer depositions** Experimental design synthesis, pore activation **Competitive** H₂O/CO₂ **sorption studies Transmission Electron Microscopy FIB films Ellipsometry of membrane activation/activity Continuation system studies**